
JOURNAL OF APPROXIMATION THEORY 50.193-199 (1987)

Reduced Complexity Evaluation of
Hypergeometric Functions

PETER B. BORWEIN*

Mathematics Department. Dalhousie University,
Halifax. Nova Scotia. B3H 4H8. Canada

Communicated by Paul G. Nevai

Received August 6, 1984

DEDICATED TO THE MEMORY OF GEZA FREUD

Fast Fourier transform-like techniques can be employed to reduce the complexity
of the evaluation of standard approximations to hypergeomelric functions and the
gamma function. This leads to algorithms that provide n digits of these functions
for O(vIn (logn)2) arithmetic operations. The usual methods require O(n)
operations for comparable accuracy. 1987 Academic Press. Inc.

1. INTRODUCTION

Most standard methods for evaluating the various elementary and
special functions provide O(n) digits for n arithmetic operations. This is the
case for evaluating, by Horner's rule, the partial sums of the Taylor expan
sion oflog(1-x) (or virtually any other non-entire analytic function). The
Taylor polynomials are locally optimal polynomial approximants on discs
in the comlex plane and if one merely measures rate of convergence against
the degree of the approximant, then, for most familiar functions, there is
little gain to be made in pursuing the matter further. However, there are
situations where high-degree approximants can be generated using
relatively few arithmetic operations.

For example, Newton's method for calculating fi is the iteration

x" + I : = ~ (x" + x/x,,), X o = 1.

The (n + 1)st iterate, which is in fact the (2",2" - 1) Pade approximant to
fi at 1, is a rational function in x of degree 2" which provides roughly 2"
digits of fi and can be evaluated for only O(n) operations.
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Various reduced complexity algorithms for log and exp are presented in
[3, 5-8]. These are based on the arithmetic-geometric mean iteration for
elliptic integrals. They can be used to construct rational approximations
that provide n digits of log for O( (log n)2) arithmetic operations.

These approaches provide a remarkable improvement in complexity n
operations are reduced to (log n)k operations. The functions for which
similar reduction is known include the Jacobian elliptic functions, the
elementary transcendental functions, and algebraic functions. Unfor
tunately, no comparable methods are known for most of the other special
functions.

Our primary goal is to show that the hypergeometric functions and the
gamma function can be calculated to n digit accuracy in 0(;;; (log n)2)
arithmetic operations. These algorithms based on FFT related methods,
while far slower than the o((log n)2) algorithms for log, are nonetheless,
from a complexity point of view, a considerable improvement over
currently employed methods.

2. MAIN RESULTS

We need the following FFT related lemmas. Proofs may be found in any
of [2,4,9].

LEMMA I. Given the coefficients of any two polynomials of degree n the
coefficients of their product can he calculated using O(n log n) arithmetic
operations.

LEMMA 2. Any polynomial ol degree n (given hy either its roots or its
coefficients) can he evaluated at any n distinct points using O(n (Iogn)2)
arithmetic operations.

We say that a function f is hypergeometric if

'x

f" '\ ". = ~ a"z
n=O

where an/a" 1 = R(n) and a 1 = I

for some fixed rational function R. This is a more general definition than is
sometimes employed. We require thatlhas non-zero radius of convergence.
We additionally assume that R has rational coefficients. This is to ensure
the easy evaluation of R. We could for most purposes replace this restric
tion by the assumption that the coefficients of R are precomputed to

desired accuracy. We observe that log (1-z), exp(z), and sin fi are all
hypergeometric by this definition as are Gaussian hypergeometric series
(F(a, h; c; z) with a, h, c rational) and Bessel functions of integer order [I].
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THEOREM 1. The first n digits of f(z) for any hypergeometric function f
(with the additional assumption above) can be calculated using
O(J~ (log n)2) arithmetic operations.

Before proving Theorem 1 some comments are in order. By computing n
digits of f(z) we mean estimating f(z) with error bounded by to-no The
order estimate in Theorem 1 is independent of z provided we restrict our
selves to compact regions in the interior of the region of convergence of the
expansion off; it is not, however, independent of f

The arithmetic operations in question are addition, substraction, mul
tiplication, and division all performed to precision O(n). Thus, the bit com-

plexity (the number of single digit operations) is OBIT (~(logn)2 M(n))
where M(n) is the bit complexity of multiplying two n digit integers
together. With a fast multiplication this produces OBIT (n 3

/
2(log n )4)

algorithms for any hypergeometric function. (See [2], [4], or [9].)

Proof of Theorem. We have

where

<X~)

f(z) = I ak Z\

k~O

k

a k = TI R(i).
i~O

Izi <b

We assume that Izi < e < b so that for large n

Sn(z) : = TI a;zi
;~O

differs from f by 0(pn
2

) for some fixed p < 1 independently of Z. It now suf
fices to show that we can calculate Sn in O(n(1og n)2) arithmetic steps. This
constitutes the remainder of the proof. Let

k -- 1

T(k):= TI R(i)
i~O

and let

Q(k) : = R(k) + R(k)R(k + l)z + ... + [R(k)R(k + 1)··· R(k + n - 1)]zn -I.

Then ak - 1 = T(k) and

Sn = zOQ( O)T(0) + znQ(n )T(n) + ... + zn(n - IlQ(n(n - 1))T(n(n - 1))

and we have reduced the evaluation of Sn to the evaluation of a simpler
function Q' T at n points.
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First observe that zo, Zll, Z211, ... , z"(n 11 can all be calculated using
O(n) steps.

The second observation is that T(O), T(n), . ", T(n(n - I)) can all be
calculated using O(n(log n)2) steps. To see this consider the rational
function V of degree n' degree (R) defined by

n-I

V(x) : = fl R(i + x).
i~O

Then

T(kn) = V(O)· V(n)'" V((k - I) n)

and by Lemma 2, given the coefficients of V(x), the V(i) can be evaluated
at 0, n, ..., (n - l)n in O(n log n)2) steps. That the coefficients of V(x) can be
calculated with similar dispatch is straightforward. Let C(m) be the number
of operations required to evaluate the coefficients of a product of m terms
RU + 1+ x )RU + 2 + x) ... RU + m + x). Then by dividing the product into
two products of half the size and recombining the halves using a fast
polynomial multiplication, as in Lemma 1, we see that

C(2m) ~ 2C(m) + O(m log m)

whence

C(m) = O(m(log m)2),

and we can expand V(x) as required. Thus, we can calculate the V(i) and
hence the T(kn) with operational complexity O(n(log n)2).

The third part necessitates showing that Q(O), Q(n ),... , Q(n(n - 1)) can
all be calculated with complexity O(n(log n)2). Note that Q is a rational
function of k of degree bounded by n' degree (R). We observe that the
evaluation of the coefficients of 0 can be split recursively since

R(k) + R(k)R(k + l)z + ... + [R(k)R(k + 1)'" R(k + 2n - I )]z2n 1

=(zn k~0~1 R(i)-(R(k+n)+'"

+[R(k+n)R(k+n+l)"'R(k+2n-l)]z" I)

+(R(k)+'" +[R(k)(k+l)"·R(k+n-l)]z"-I).

If D(m) is the number of operations required to evaluate the coefficients of
a sum of running products of the above type of length m then

D(2m) ~ 2D(m) + O(m log m).
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The final term comes from the multiplications and additions needed to
recombine the two pieces. Note that we can compute all the JIR(i) terms in
O(n(log n f) operations. The recursive inequality for D solves as

D(m) = O(m(log m)2)

and by Lemma 2 we can calculate all the Q(kn) with complexity
O(n(log n)2).

The three parts above combine to finish the proof by showing that Sn
can be evaluated using O(n(log n)2) operations. I

In a similar vein we have the following theorem for the gamma function.

THEOREM 2. The first n digits of r(x) can be calculated using
OCy'r,; (log n )2) arithmetic operations.

Proof We can construct a uniform estimate for s E [1, 2]. From

r(s) : = teo e 't s - I dt

we have on splitting the integral at N and expanding

. ex (_ l)k Nk w

F(s)=N' L ----+ f e-'t' 1 dt.
k~O k! s+k N

One easily derives for SE [1, 2] and n: = 6N that if

then

The result now follows basically as in Theorem 1. We observe that the
incomplete gamma function

eo (_ 1)kx k

k~ok!(s+k)

is a hypergeometric function in x and is amenable to a similar analysis as
that provided by Theorem 1 (with some extra care to ensure the uniformity
in s). The approximation g n (s) requires the computation of N S which, by
Theorem 1, can be performed in O(~ (log n)2) operations.
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3. COMMENTS

(A) For rational z within the region of convergence of a hypergeometric
f we can calculate l{z) with bit complexity

This bound is no longer independent of z. (We must also make some
minimal assumptions about the multiplication underlying M(n). It sufficies,
for example, to assume M increasing and M(2n) ~ 2M(n)). This estimate is
achieved by taking advantage of the observation that most of the
operations required to calculate Q(O) recursively, as in Theorem I, can be
performed to a reduced precision. If the rational function R associated with
a hypergeometric f has a zero at infinity then the partial sums converge
rapidly enough to ensure an

0RIT((Iog n)M(n))

bit complexity method for evaluating f at a rational z. This will be the case
exactly when f is entire. See [7J for further details concerning calculating
exp in this fashion.

(B) Let

For Izl":;; I

r
This already provides a method of evaluating exp using only OC)n)
arithmetic operations. We can couple this with an FFT reduced evaluation
of sn(z/2 n

), as in Theorem I, to provide an algorithm that calculates n
digits of exp using

arithmetic operations. Similar algorithms exist for log and the trig
functions [6, 7]. Of course, very much faster algorithms for the elementary
functions based on the transformations of elliptic integrals are known
[3, 5~8].

(C) These algorithms are fairly complicated and are of little practical
utility even for the not very practical problem of unlimited precision
evaluation of special functions. They do, however, offer further evidence
that traditional measures of efficiency of approximation are perhaps not
always the most appropriate.
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